PHOTOGRAMMETRY

What is PHOTOGRAMMETRY?

 

Photogrammetry is an estimative scientific method that aims at recovering the exact positions and motion pathways of designated reference points located on any moving object, on its components and in the immediately adjacent environment. Photogrammetry employs high-speed imaging and the accurate methods of remote sensing in order to detect, measure and record complex 2-D and 3-D motion fields. Photogrammetry feeds the measurements from remote sensing and the results of imagery analysis into computational models in an attempt to successively estimate, the actual 3-D relative motions within the captured field.

 

How is it done?

 

The 3-D co-ordinates define the locations of object points in the 3-D space. The image co-ordinates define the locations of the object points' images on the film or an electronic imaging device. The exterior orientation of a camera defines its location in space and its view direction. The inner orientation defines the geometric parameters of the imaging process. This is primarily the focal length of the lens, but can also include the description of lens distortions. Further additional observations play an important role: With scale bars, basically a known distance of two points in space, or known fix points, the connection to the basic measuring units is created.

 

What is it used for?

 

Photogrammetry is used in different fields, such as topographic mapping, architecture, engineering, manufacturing, quality control, police investigation, and geology, as well as by archaeologists to quickly produce plans of large or complex sites and by meteorologists as a way to determine the actual wind speed of a tornado where objective weather data cannot be obtained. It is also used to combine live action with computer-generated imagery in movie post-production; The Matrix is a good example of the use of photogrammetry in film.

 

Stereophotogrammetry.

 

A more sophisticated technique, called stereophotogrammetry, involves estimating the three-dimensional coordinates of points on an object. These are determined by measurements made in two or more photographic images taken from different positions (see stereoscopy). Common points are identified on each image. A line of sight (or ray) can be constructed from the camera location to the point on the object. It is the intersection of these rays (triangulation) that determines the three-dimensional location of the point. More sophisticated algorithms can exploit other information about the scene that is known a priori, for example symmetries, in some cases allowing reconstructions of 3-D coordinates from only one camera position.

Superior, Wisconsin 54880    mobile: 651.325.6899

info@SKYLINEPHOTOGRAPH.COM

SKYLINE PHOTOGRAPHIC INNOVATIONS 2014-2017©

All Rights Reserved Built with 100% recycled pixels.